忆了许久,马正轩一直回忆到去年这个时候在冬令营培训备战imo时,顾律给他讲过的一个小知识点。
“这是……koebe偏差定理!”马正轩眼前一亮,回忆起顾律讲述过的有关‘koebe偏差定理’的内容。
所谓的koebe偏差定理,也就是附加题二的题干,是用来描述单位圆盘上单叶函数的一个有界定理。
“当时老师是怎么证明这个定理的?”马正轩闭着眼睛,仔细回忆。
“de branges 定理!”许久之后,马正轩缓缓吐出这个名词。
他记得,当初就是利用de branges 定理,推导之后,得到的koebe偏差定理。
de branges 定理,是大学复变函数课程中的一个定理,它的主要内容,是讲如果有一个函数的幂级数展开为f(z)=z+a2z^2+a3z^3+……anz^n,则|an|≦n且等号成立当且仅当函数z/(1-z)^2或它的旋转。
而当时,在马正轩的记忆中,顾老师就是利用,利用de branges 定理,推导出当|z|<1时,f(z)的范围。由于f(0)=0,……,得到|f(z)|=|∫f(ζ)d