假设宇宙大爆炸时的一个光子,在岁月的长河中,一直不停歇地奔跑着,科学家们如果能够解读出它所携带的信息,就能窥见宇宙早期的样子。我们现在可以看到的宇宙,最远的信号是来自宇宙微波背景辐射。二十世纪六十年代初,美国两位科学家为改进卫星通讯,建立了高灵敏度的号角式接收天线系统。为了降低噪音,他们甚至清除了天线上的鸟粪,但依然有消除不掉的背景噪声。这正是宇宙微波背景辐射造成的,这一发现为他们赢得了1978年诺贝尔物理学奖。
尽管宇宙微波背景辐射是研究宇宙再电离时期的一种重要方法,但这种方法有局限,一般会结合宇宙早期星系的研究,如对那个特殊时段的类星体、伽马爆和恒星形成星系的研究,来获得再电离的演化历史。然而宇宙早期类星体的数目非常少,而早期宇宙伽马爆又很难捕捉到,故而早期宇宙的恒星形成星系现在是研究宇宙再电离的热点。这些宇宙早期天体所辐射的莱曼阿尔法光子,一直是科学家们探测宇宙再电离的关键手段,因为这一发射线光子会被宇宙间弥散的中性氢原子散射。如果说宇宙整体的中性氢环境就像一场大雾,这些早期宇宙中的莱曼阿尔法星系就像大雾中的车灯,被遮挡得有些模糊。一旦周围环境开始电离,大雾会渐渐