,苏联的布赫夕太勃和小维诺格拉多夫,及意大利的朋比利证明了“1+3”。
1966年,中国的陈景润证明了“1+2”。
在数轴上取定大整数x,再从x往前看,寻找使得哥德巴赫猜想不成立的那些偶数,即例外偶数。
x之前所有例外偶数的个数记为e。
很多人希望无论x多大,x之前只有一个例外偶数,那就是2,即只有2使得猜想是错的。这样一来,哥德巴赫猜想就等价于e永远等于1。当然,直到2013年还不能证明e1;
但是。
能够证明e远比x小。
在x前面的偶数个数大概是x2;如果当x趋于无穷大时,e与x的比值趋于零,那就说明这些例外偶数密度是零,即哥德巴赫猜想对于几乎所有的偶数成立。
这就是例外集合的思路。
……
维诺格拉多夫的三素数定理发表于1937年。第二年,在例外集合这一途径上,就同时出现了四个证明,其中包括华罗庚先生的着名定理。
如果偶数的哥德巴赫猜想正确,那么奇数的猜想也正确。我们可以把这个问题反过来思考。已知奇数n可以表成三个素数之和,假如又能证明这三个素数中有一